Sub1 and Maf1, Two Effectors of RNA Polymerase III, Are Involved in the Yeast Quiescence Cycle
نویسندگان
چکیده
Sub1 and Maf1 exert an opposite effect on RNA polymerase III transcription interfering with different steps of the transcription cycle. In this study, we present evidence that Sub1 and Maf1 also exhibit an opposite role on yeast chronological life span. First, cells lacking Sub1 need more time than wild type to exit from resting and this lag in re-proliferation is correlated with a delay in transcriptional reactivation. Second, our data show that the capacity of the cells to properly establish a quiescent state is impaired in the absence of Sub1 resulting in a premature death that is dependent on the Ras/PKA and Tor1/Sch9 signalling pathways. On the other hand, we show that maf1Δ cells are long-lived mutant suggesting a connection between Pol III transcription and yeast longevity.
منابع مشابه
Full repression of RNA polymerase III transcription requires interaction between two domains of its negative regulator Maf1.
Maf1, first identified in yeast Saccharomyces cerevisiae, is a general negative regulator of RNA polymerase III (Pol III). Transcription regulation by Maf1 is important under stress conditions and during the switch between fermentation and respiration. Maf1 is composed of two domains conserved during evolution. We report here that these two domains of human Maf1 are resistant to mild proteolysi...
متن کاملTwo steps in Maf1-dependent repression of transcription by RNA polymerase III.
In Saccharomyces cerevisiae, Maf1 is essential for mediating the repression of transcription by RNA polymerase (pol) III in response to diverse cellular conditions. These conditions activate distinct signaling pathways that converge at or above Maf1. Thus, Maf1-dependent repression is thought to involve a common set of downstream inhibitory effects on the pol III machinery. Here we provide supp...
متن کاملMaf1 is involved in coupling carbon metabolism to RNA polymerase III transcription.
RNA polymerase III (Pol III) produces essential components of the biosynthetic machinery, and therefore its activity is tightly coupled with cell growth and metabolism. In the yeast Saccharomyces cerevisiae, Maf1 is the only known global and direct Pol III transcription repressor which mediates numerous stress signals. Here we demonstrate that transcription regulation by Maf1 is not limited to ...
متن کاملPP4 dephosphorylates Maf1 to couple multiple stress conditions to RNA polymerase III repression
Maf1 is the 'master' repressor of RNA polymerase III (Pol III) transcription in yeast, and is conserved in eukaryotes. Maf1 is a phospho-integrator, with unfavourable growth conditions leading to rapid Maf1 dephosphorylation, nuclear accumulation, binding to RNA Pol III at Pol III genes and transcriptional repression. Here, we establish the protein phosphatase 4 (PP4) complex as the main Maf1 p...
متن کاملRegulation of RNA polymerase III transcription by Maf1 protein.
Maf1 was the first protein discovered to regulate polymerase III RNA in yeast and because it is evolutionarily conserved, a Maf1 ortholog also serves to restrain transcription in mouse and human cells. Understanding the mechanism of the regulation has been made possible by recent studies showing that Maf1 is a nuclear/cytoplasmic protein whose subcellular distribution and hence negative regulat...
متن کامل